首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31059篇
  免费   2593篇
  国内免费   1788篇
化学   16234篇
晶体学   154篇
力学   868篇
综合类   677篇
数学   6906篇
物理学   10601篇
  2023年   218篇
  2022年   423篇
  2021年   1133篇
  2020年   656篇
  2019年   768篇
  2018年   544篇
  2017年   662篇
  2016年   832篇
  2015年   882篇
  2014年   1203篇
  2013年   2039篇
  2012年   1355篇
  2011年   1569篇
  2010年   1481篇
  2009年   1868篇
  2008年   1999篇
  2007年   2136篇
  2006年   1622篇
  2005年   1033篇
  2004年   899篇
  2003年   953篇
  2002年   962篇
  2001年   956篇
  2000年   675篇
  1999年   530篇
  1998年   518篇
  1997年   364篇
  1996年   445篇
  1995年   399篇
  1994年   415篇
  1993年   448篇
  1992年   438篇
  1991年   295篇
  1990年   250篇
  1989年   205篇
  1988年   231篇
  1987年   192篇
  1986年   203篇
  1985年   314篇
  1984年   235篇
  1983年   143篇
  1982年   288篇
  1981年   467篇
  1980年   426篇
  1979年   463篇
  1978年   371篇
  1977年   281篇
  1976年   238篇
  1974年   74篇
  1973年   149篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of NSiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature,for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity–temperature characteristics,that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing.These results contribute to the electronic application of nanodevices.  相似文献   
52.
53.
High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.  相似文献   
54.
Theoretical investigations on the insertion reaction mechanisms of three- membered-ring silylenoid H2 Si Li F with GeH 3R(R = F, OH, NH2) have been systematically carried out by combined density functional theory(DFT) and ab initio quantum chemical calculations. The geometries of all stationary points for these reactions were optimized using the B3 LYP method and then the QCISD method was used to calculate the single-point energies. The calculated results indicate that, there are one precursor complex(Q), one transition state(TS), and one intermediate(IM) which connect the reactants and the products along the potential energy surface. The insertion reactions of three-membered-ring silylenoid with Ge H3 R proceed in a concerted manner, forming H2RSi-Ge H3 and Li F. The calculated potential energy barriers of the three reactions are 29.17, 30.90, and 54.07 k J/mol, and the reaction energies for the three reactions are –127.05, –116.91, and –103.31 k J/mol, respectively. The insertion reactions in solvents are similar to those in vacuum. Under the same situation, the insertion reactions should occur easily in the following order: GeH 3-F GeH 3-OH GeH 3-NH2. The elucidations of the mechanism of these insertion reactions provided a new mode of silicon-germanium bond formation.  相似文献   
55.
56.
Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs.  相似文献   
57.
58.
Background: Carnosine is a dipeptide molecule (β-alanyl-l-histidine) with anti-inflammatory, antioxidant, anti-glycation, and chelating properties. It is used in exercise physiology as a food supplement to increase performance; however, in vitro evidence suggests that carnosine may exhibit anti-cancer properties. Methods: In this study, we investigated the effect of carnosine on breast, ovarian, colon, and leukemic cancer cell proliferation. We further examined U937 promonocytic, human myeloid leukemia cell phenotype, gene expression, and cytokine secretion to determine if these are linked to carnosine’s anti-proliferative properties. Results: Carnosine (1) inhibits breast, ovarian, colon, and leukemic cancer cell proliferation; (2) upregulates expression of pro-inflammatory molecules; (3) modulates cytokine secretion; and (4) alters U937 differentiation and phenotype. Conclusion: These effects may have implications for a role for carnosine in anti-cancer therapy.  相似文献   
59.
Quantitation of drugs used for the treatment of chronic lymphocytic leukemia in various biological matrices during both pre-clinical and clinical developments is very important, often in routine therapeutic drug monitoring. The first developed methods for quantitation were traditionally done on LC in combination with either UV or fluorescence detection. However, the emergence of LC with mass spectrometry in tandem in early 1990s has revolutionized the quantitation as it has provided better sensitivity and selectivity within a shorter run time; therefore it has become the choice of method for the analysis of various drugs. In this article, an overview of various bioanalytical methods (HPLC or LC–MS/MS) for the quantification of drugs for the treatment of chronic lymphocytic leukemia, along with applicability of these methods, is given.  相似文献   
60.
We carried out the thermal curing of the copolymers of N-allylmaleimide (AMI) and 2-ethylhexyl acrylate (2EHA) using 1,3,4,6-tetra(2-mercaproethyl)glycoluril ( G1 ), 1,3,4,6-tetra(3-mercaptopropyl)glycoluril ( G2 ), 1,3,4,6-tetraallylglycoluril ( G3 ), triallylisocyanurate (TAIC), and pentaerythritol tetrakis(3-mercaptobutyrate) (PEMB) as the crosslinkers. Based on the results for the analysis of thiol–ene reactions monitored by IR spectroscopy, it was confirmed that the curing rate significantly depended on the combination of the used crosslinkers. The insoluble fraction after curing was more than 90% for the systems using the glycoluril crosslinkers, while the conversion of the allyl groups was suppressed due to the rigid structure of these crosslinkers. The heat resistance and the mechanical properties of the crosslinked polymers were investigated by thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and mechanical tensile tests. For the products cured using the glycoluril crosslinkers, the glass transition temperature (Tg) and the maximum temperature of thermal decomposition (Tmax) were 54–59 °C and 395–409 °C, respectively, being higher than those for the cured product prepared with PEMB and TAIC as the conventional crosslinkers. The elasticity (75–139 MPa), the maximum strength (3.0–4.1 MPa), and the adhesion strength (6.7–10.7 MPa) for the polymers cured with the glycoluril crosslinkers, determined by the mechanical tensile and single lap-shear adhesion tests, were higher than those for cured materials produced with PEMB. Thus, the thermal and mechanical properties of the maleimide copolymers were efficiently enhanced by crosslinking using the rigid glycoluril compounds. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 923–931  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号